Complex Network Community Detection by Improved Nondominated Sorting Genetic Algorithm
نویسندگان
چکیده
منابع مشابه
An Improved Nondominated Sorting Algorithm
This paper presents a new procedure for the nondominated sorting with constraint handling to be used in a multiobjective evolutionary algorithm. The strategy uses a sorting algorithm and binary search to classify the solutions in the correct level of the Pareto front. In a problem with m objective functions, using n solutions in the population, the original nondominated sorting algorithm, used ...
متن کاملOptimal Placement and Sizing of Distributed Generation Via an Improved Nondominated Sorting Genetic Algorithm II
The use of distributed generation units in distribution networks has attracted the attention of network managers due to its great benefits. In this research, the location and determination of the capacity of distributed generation (DG) units for different purposes has been studied simultaneously. The multi-objective functions in the optimization model are reducing system line losses; reducing v...
متن کاملAn Improved Nondominated Sorting Multiobjective Genetic Algorithm and Its Application
The nondominated sorting genetic algorithm with elitism (NSGA-II) is widely used due to its good performance on solving multiobjective optimization problems. In each iteration of NSGA-II, truncation selection is performed based on the rank and crowding distance of each solution. There are, however, drawbacks in this process. These drawbacks to some extent cause overlapping solutions in the popu...
متن کاملIsothermal Reactor Network Synthesis Using Coupled NonDominated Sorting Genetic Algorithm-II (NSGAII) with Quasi Linear Programming (LP) Method
In this study a new and robust procedure is presented to solve synthesis of isothermal reactor networks (RNs) which considers more than one objective function. This <span style="font-size: 9pt; color: #0...
متن کاملA Nondominated Sorting Genetic Algorithm for Shortest Path Routing Problem
The shortest path routing problem is a multiobjective nonlinear optimization problem with constraints. This problem has been addressed by considering Quality of service parameters, delay and cost objectives separately or as a weighted sum of both objectives. Multiobjective evolutionary algorithms can find multiple pareto-optimal solutions in one single run and this ability makes them attractive...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: DEStech Transactions on Computer Science and Engineering
سال: 2019
ISSN: 2475-8841
DOI: 10.12783/dtcse/iteee2019/28726